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Problem setting



What is tensor completion ?

Tensor T

subsampling−−−−−−−→

Observed tensor T̃
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What is tensor completion ?

Formally:

• T is a tensor of size n1 × . . .nk
• the observed tensor T̃ is defined as

T̃i1,...,ik =

Ti1,...,ik with probability p

0 with probability 1− p

Goal: recover T from T̃
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The problems begin

Too many degrees of
freedom!

Too localized!

Both need p = 1
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New assumptions

• T has low CP-rank:

T =
r∑
i=1

λi

(
w(1)
i ⊗ · · · ⊗ w(k)

i

)
⇒ r × (n1 + · · ·+ nk) degrees of freedom

• T is delocalized:

‖T‖∞ ' (
∏

ni)−1/2‖T‖F

or (a little stronger)

‖w(j)
i ‖∞ ' n−1/2i
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Unfoldings and hardness

Computational complexity problem: everything with tensors is
hard [Hillar, Lim ’09]

• spectral norm
• eigenvalues/singular values
• low-rank approximations
• etc.
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Unfoldings and hardness

Tensor (size
n× · · · × n)

unfolda,b−−−−−→

nb

na

Unfolding matrix (size na × nb)
“Grouping” indices:

Ti1,...,ik = M(i1,...,ia),(ia+1,...,ik)

Tensor completion Long matrix completion
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Unfoldings and hardness

Statistical-computational gap:

• NP-hard algorithms [Ghadermarzy et al ’19]: tensor-based
minimization methods
→ works until p = O(n−(k−1))

• Unfolding-based algorithms [Montanari and Sun ’16, Liu
and Moitra ’20, Cai et al. ’21...]
→ works until p = O(n−k/2)

What happens if p ∝ n−k/2 ?
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Not a trivial improvement

Running example: rank-one tensor T = x ⊗ x ⊗ x, x ∈ {−1, 1}n

Constant “degree”: p = dn−3/2

Typical algorithm:

• unfold T̃ into A = unfold1,2(T̃)
• take the SVD of A (+ postprocessing)
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Not a trivial improvement

Figure: AA>,d = 20
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Not a trivial improvement

Figure: AA>,d = 2
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Not a trivial improvement

Figure: AA>,d = 2
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Where are we so far ?

Recap:

• existing methods to not reach the exact conjectured
threshold for tensor completion

• it is not a technical but a conceptual issue
• it suffices to solve long matrix completion
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Our solution: non-backtracking
wedge matrix



Setting

Long matrix reconstruction:

• Rectangular matrix M of size n×m (m�n), with SVD

M =
r∑
i=1

νiφiψ
>
i

• Masking matrix X with Xij ∼ Ber(p)
• Observed matrix:

A =
X ◦M
p

so that E[A] = M

Assumptions:
r,
√
n‖φi‖∞ = O(polylog(n))
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Non-backtracking wedge matrix

We can view A as a weighted bipartite graph G with vertex sets
V1 = [n] and V2 = [m].

The non-backtracking wedge matrix B is defined on oriented
wedges in G

~E2 = {(x, y, z) ∈ V1 × V2 × V1, z 6= x}

x

y

z

⇒ B has size ∼ d2 n: independent from m
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Non-backtracking wedge matrix

Defined as

Bef =

Af1f2Af3f2 if e3 = f1 and e2 6= f2
0 otherwise

(1)

e1

e2

f1

f2

f3

e f

Weight assignment is a convention !
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Thresholds

Two important thresholds:

ϑ1 =
√

‖Var(A)‖

• naturally occuring
• likely sharp
• decreases as d−1/2

ϑ2 = ‖A‖∞

• less natural
• mostly spurious
• decreases as d−1

Total threshold:

ϑ = max(ϑ1, ϑ2)
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Our results: eigenvalues

Theorem (S. and Zhu ’23)

• (Outliers) For any νi satistfying νi > ϑ, there exists an eigen-
value λi of B with

|λi − ν2i | = O(n−c)

• (Bulk) All other eigenvalues are asymptotically confined in
a circle of radius ϑ2
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Results: eigenvalues

Figure: B,d = 2
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Embedding eigenvectors

Need an embedding procedure from R~E2 to Rn

• For a right eigenvector ξR:

ζR(x) =
∑
e:e1=x

Ae1e2Ae3e2ξR(e)

• For a left eigenvector ξL:

ζL(x) =
∑
e:e1=x

ξL(e)

Depends on the weight convention !
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Our results: eigenvectors

Theorem (S. and Zhu ’23)

Assume that νi > ϑ, and let ξL/Ri the left/right eigenvectors
associated to λi. Then, there exists a γi such that

γi = 1− O(d−1)

and ∣∣∣〈ζL/Ri , φi〉 −
√
γi

∣∣∣ = O(n−c)

Weak recovery when d→ ∞
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Our results: eigenvectors

Figure: B,d = 2
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Proof idea

x

y

z

• deg(y) = 2 w.h.p
• “independent” wedges
• Associated weight:
We = AxyAzy

“⇔”

x z
(y)

• Erdős-Rényi graph
G ∼ G(n,d2/n)

• Associated weight:
We = AxYAzY , Y ∼ Unif([m])

ER with random weights [Stephan and Massoulié ’20]
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Takeaways and directions

• Does not work for finite aspect ratio (m = O(n)): is there a
unified spectral algorithm with [Bordenave et al. ’21] ?

• Our algorithm does not recover the right singular vectors
of M (consistent with [Montanari and Wu ’22])

• We only handle the case r = polylog(n); what happens
when r = nκ ? Can we reach the optimal sample
complexity rd3/2 ?
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Thank you !

arxiv:2304.02077
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