Non-backtracking tensor and long matrix completion

Ludovic Stephan

École Polytechnique Fédérale de Lausanne

Yizhe Zhu University of California, Irvine

Problem setting

What is tensor completion ?

Formally:

- T is a tensor of size $n_1 \times \ldots n_k$
- the observed tensor $\tilde{\mathcal{T}}$ is defined as

$$\tilde{T}_{i_1,\dots,i_k} = \begin{cases} T_{i_1,\dots,i_k} & \text{with probability } p \\ 0 & \text{with probability } 1-p \end{cases}$$

Formally:

- T is a tensor of size $n_1 \times \ldots n_k$
- \cdot the observed tensor $\tilde{\mathcal{T}}$ is defined as

$$\tilde{T}_{i_1,...,i_k} = \begin{cases} T_{i_1,...,i_k} & \text{with probability } p \\ 0 & \text{with probability } 1 - p \end{cases}$$

Goal: recover T from \tilde{T}

The problems begin

Too many degrees of freedom!

The problems begin

Too many degrees of freedom!

Too localized!

The problems begin

Too many degrees of freedom!

Too localized!

Both need p = 1

• T has low CP-rank:

$$T = \sum_{i=1}^{r} \lambda_i \left(w_i^{(1)} \otimes \cdots \otimes w_i^{(k)} \right)$$

 \Rightarrow r \times (n₁ + · · · + n_k) degrees of freedom

• T has low CP-rank:

$$T = \sum_{i=1}^{r} \lambda_i \left(w_i^{(1)} \otimes \cdots \otimes w_i^{(k)} \right)$$

 \Rightarrow r \times (n₁ + · · · + n_k) degrees of freedom

• *T* is delocalized:

$$||T||_{\infty} \simeq (\prod n_i)^{-1/2} ||T||_F$$

or (a little stronger)

$$\|w_{i}^{(j)}\|_{\infty} \simeq n_{i}^{-1/2}$$

Computational complexity problem: everything with tensors is hard [Hillar, Lim '09]

- spectral norm
- eigenvalues/singular values
- low-rank approximations
- etc.

Unfoldings and hardness

"Grouping" indices:

$$T_{i_1,...,i_k} = M_{(i_1,...,i_a),(i_{a+1},...,i_k)}$$

Unfoldings and hardness

"Grouping" indices:

$$T_{i_1,...,i_k} = M_{(i_1,...,i_a),(i_{a+1},...,i_k)}$$

Tensor completion <= Long matrix completion

Unfoldings and hardness

"Grouping" indices:

$$T_{i_1,...,i_k} = M_{(i_1,...,i_a),(i_{a+1},...,i_k)}$$

Tensor completion ⇒ Long matrix completion

Statistical-computational gap:

• NP-hard algorithms [Ghadermarzy et al '19]: tensor-based minimization methods \rightarrow works until $p = O(n^{-(k-1)})$ Statistical-computational gap:

- NP-hard algorithms [Ghadermarzy et al '19]: tensor-based minimization methods \rightarrow works until $p = O(n^{-(k-1)})$
- Unfolding-based algorithms [Montanari and Sun '16, Liu and Moitra '20, Cai et al. '21...] \rightarrow works until $p = O(n^{-k/2})$

Statistical-computational gap:

- NP-hard algorithms [Ghadermarzy et al '19]: tensor-based minimization methods \rightarrow works until $p = O(n^{-(k-1)})$
- Unfolding-based algorithms [Montanari and Sun '16, Liu and Moitra '20, Cai et al. '21...] \rightarrow works until $p = O(n^{-k/2} \times \text{polylog}(n))$

What happens if $p \propto n^{-k/2}$?

Running example: rank-one tensor $T = x \otimes x \otimes x$, $x \in \{-1, 1\}^n$ Constant "degree": $p = dn^{-3/2}$ Typical algorithm:

- unfold \tilde{T} into $A = \text{unfold}_{1,2}(\tilde{T})$
- take the SVD of A (+ postprocessing)

Figure: $AA^{\top}, d = 20$

Figure: $AA^{\top}, d = 20$

Figure: $AA^{\top}, d = 2$

Figure: $AA^{\top}, d = 2$

Recap:

- existing methods to not reach the exact conjectured threshold for tensor completion
- it is not a technical but a conceptual issue
- it suffices to solve long matrix completion

Our solution: non-backtracking wedge matrix

Setting

Long matrix reconstruction:

• Rectangular matrix M of size $n \times m$ (m \gg n), with SVD

$$M = \sum_{i=1}^{r} \nu_i \phi_i \psi_i^{\mathsf{T}}$$

- Masking matrix X with $X_{ij} \sim Ber(p)$
- Observed matrix:

$$A = \frac{X \circ M}{p}$$
 so that $\mathbb{E}[A] = M$

Setting

Long matrix reconstruction:

• Rectangular matrix M of size $n \times m$ (m \gg n), with SVD

$$M = \sum_{i=1}^{r} \nu_i \phi_i \psi_i^{\mathsf{T}}$$

- Masking matrix X with $X_{ij} \sim Ber(p)$
- Observed matrix:

$$A = \frac{X \circ M}{p}$$
 so that $\mathbb{E}[A] = M$

Assumptions:

$$r, \sqrt{n} \|\phi_i\|_{\infty} = O(\mathsf{polylog}(n))$$

We can view A as a weighted bipartite graph G with vertex sets $V_1 = [n]$ and $V_2 = [m]$.

The non-backtracking wedge matrix B is defined on oriented wedges in G

$$\vec{E}_2 = \{(x, y, z) \in V_1 \times V_2 \times V_1, z \neq x\}$$

We can view A as a weighted bipartite graph G with vertex sets $V_1 = [n]$ and $V_2 = [m]$.

The non-backtracking wedge matrix B is defined on oriented wedges in G

$$\vec{E}_2 = \{(x, y, z) \in V_1 \times V_2 \times V_1, z \neq x\}$$

We can view A as a weighted bipartite graph G with vertex sets $V_1 = [n]$ and $V_2 = [m]$.

The non-backtracking wedge matrix B is defined on oriented wedges in G

$$\vec{E}_2 = \{ (x, y, z) \in V_1 \times V_2 \times V_1, z \neq x \}$$

 \Rightarrow *B* has size $\sim d^2 n$: independent from m

Defined as

$$B_{ef} = \begin{cases} A_{f_1f_2}A_{f_3f_2} & \text{if } e_3 = f_1 \text{ and } e_2 \neq f_2 \\ 0 & \text{otherwise} \end{cases}$$
(1)

Defined as

$$B_{ef} = \begin{cases} A_{f_1f_2}A_{f_3f_2} & \text{if } e_3 = f_1 \text{ and } e_2 \neq f_2 \\ 0 & \text{otherwise} \end{cases}$$

(1)

Defined as

Weight assignment is a convention !

Two important thresholds:

$$\vartheta_1 = \sqrt{\|\mathsf{Var}(\mathsf{A})\|}$$

- naturally occuring
- likely sharp
- decreases as $d^{-1/2}$

Two important thresholds:

$$\vartheta_1 = \sqrt{\|\mathsf{Var}(\mathsf{A})\|}$$

- naturally occuring
- likely sharp
- decreases as $d^{-1/2}$

- $\vartheta_2 = \|A\|_{\infty}$
- less natural
- mostly spurious
- decreases as d^{-1}

Two important thresholds:

$$\vartheta_1 = \sqrt{\|\mathsf{Var}(\mathsf{A})\|}$$

- naturally occuring
- likely sharp
- decreases as $d^{-1/2}$

- $\vartheta_2 = \|A\|_{\infty}$
- less natural
- mostly spurious
- decreases as d^{-1}

Total threshold:

 $\vartheta = \max(\vartheta_1, \vartheta_2)$

Theorem (S. and Zhu '23)

(Outliers) For any ν_i satistfying ν_i > θ, there exists an eigenvalue λ_i of B with

$$|\lambda_i - \nu_i^2| = O(n^{-c})$$

Theorem (S. and Zhu '23)

(Outliers) For any ν_i satistfying ν_i > θ, there exists an eigenvalue λ_i of B with

$$|\lambda_i - \nu_i^2| = O(n^{-c})$$

- (Bulk) All other eigenvalues are asymptotically confined in a circle of radius ϑ^2

Results: eigenvalues

Figure: B, d = 2

Need an embedding procedure from $\mathbb{R}^{\vec{E}_2}$ to \mathbb{R}^n

Need an embedding procedure from $\mathbb{R}^{\vec{E}_2}$ to \mathbb{R}^n

• For a right eigenvector ξ^R :

$$\zeta^{R}(x) = \sum_{e:e_{1}=x} A_{e_{1}e_{2}} A_{e_{3}e_{2}} \xi^{R}(e)$$

• For a left eigenvector ξ^L :

$$\zeta^{L}(X) = \sum_{e:e_1=x} \xi^{L}(e)$$

Need an embedding procedure from $\mathbb{R}^{\vec{E}_2}$ to \mathbb{R}^n

• For a right eigenvector ξ^R :

$$\zeta^{R}(x) = \sum_{e:e_{1}=x} A_{e_{1}e_{2}} A_{e_{3}e_{2}} \xi^{R}(e)$$

• For a left eigenvector ξ^L :

$$\zeta^{L}(\mathbf{X}) = \sum_{e:e_1=\mathbf{X}} \xi^{L}(e)$$

Depends on the weight convention !

Theorem (S. and Zhu '23)

Assume that $\nu_i > \vartheta$, and let $\xi_i^{L/R}$ the left/right eigenvectors associated to λ_i . Then, there exists a γ_i such that

$$\gamma_i = 1 - O(d^{-1})$$

and

$$\left|\langle \zeta_i^{L/R}, \phi_i \rangle - \sqrt{\gamma_i} \right| = O(n^{-c})$$

Theorem (S. and Zhu '23)

Assume that $\nu_i > \vartheta$, and let $\xi_i^{L/R}$ the left/right eigenvectors associated to λ_i . Then, there exists a γ_i such that

$$\gamma_i = 1 - O(d^{-1})$$

and

$$\left|\langle \zeta_{i}^{L/R},\phi_{i}\rangle-\sqrt{\gamma_{i}}\right|=O(n^{-c})$$

Weak recovery when $d ightarrow \infty$

Our results: eigenvectors

Figure: B, d = 2

Proof idea

- $\deg(y) = 2$ w.h.p
- "independent" wedges
- Associated weight: $W_e = A_{xy}A_{zy}$

Proof idea

- $\deg(y) = 2$ w.h.p
- "independent" wedges
- Associated weight: $W_e = A_{xy}A_{zy}$

- Erdős-Rényi graph $G \sim \mathcal{G}(n, d^2/n)$
- Associated weight: $W_e = A_{XY}A_{ZY}, Y \sim \text{Unif}([m])$

Proof idea

- $\deg(y) = 2$ w.h.p
- "independent" wedges
- Associated weight: $W_e = A_{xy}A_{zy}$

- Erdős-Rényi graph $G \sim \mathcal{G}(n, d^2/n)$
- Associated weight: $W_e = A_{XY}A_{ZY}, Y \sim \text{Unif}([m])$

ER with random weights [Stephan and Massoulié '20]

• Does not work for finite aspect ratio (m = O(n)): is there a unified spectral algorithm with [Bordenave et al. '21]?

- Does not work for finite aspect ratio (m = O(n)): is there a unified spectral algorithm with [Bordenave et al. '21] ?
- Our algorithm does not recover the right singular vectors of *M* (consistent with [Montanari and Wu '22])

- Does not work for finite aspect ratio (m = O(n)): is there a unified spectral algorithm with [Bordenave et al. '21] ?
- Our algorithm does not recover the right singular vectors of *M* (consistent with [Montanari and Wu '22])
- We only handle the case r = polylog(n); what happens when $r = n^{\kappa}$? Can we reach the optimal sample complexity $rd^{3/2}$?

Thank you ! arxiv:2304.02077