Non-backtracking tensor and long matrix completion

Ludovic Stephan
École Polytechnique Fédérale de Lausanne

Yizhe Zhu
University of California, Irvine

Problem setting

What is tensor completion?

What is tensor completion?

Formally:

- T is a tensor of size $n_{1} \times \ldots n_{k}$
- the observed tensor \tilde{T} is defined as

$$
\tilde{T}_{i_{1}, \ldots, i_{k}}= \begin{cases}T_{i_{1}, \ldots, i_{k}} & \text { with probability } p \\ 0 & \text { with probability } 1-p\end{cases}
$$

What is tensor completion?

Formally:

- T is a tensor of size $n_{1} \times \ldots n_{k}$
- the observed tensor \tilde{T} is defined as

$$
\tilde{T}_{i_{1}, \ldots, i_{k}}= \begin{cases}T_{i_{1}, \ldots, i_{k}} & \text { with probability } p \\ 0 & \text { with probability } 1-p\end{cases}
$$

Goal: recover T from \tilde{T}

The problems begin

Too many degrees of freedom!

The problems begin

Too many degrees of freedom!

Too localized!

The problems begin

Too many degrees of freedom!

Too localized!

Both need $p=1$

New assumptions

- T has low CP-rank:

$$
T=\sum_{i=1}^{r} \lambda_{i}\left(w_{i}^{(1)} \otimes \cdots \otimes w_{i}^{(k)}\right)
$$

$\Rightarrow r \times\left(n_{1}+\cdots+n_{k}\right)$ degrees of freedom

New assumptions

- T has low CP-rank:

$$
\begin{aligned}
& T=\sum_{i=1}^{r} \lambda_{i}\left(w_{i}^{(1)} \otimes \cdots \otimes w_{i}^{(k)}\right) \\
& \Rightarrow r \times\left(n_{1}+\cdots+n_{k}\right) \text { degrees of freedom }
\end{aligned}
$$

- T is delocalized:

$$
\|T\|_{\infty} \simeq\left(\prod n_{i}\right)^{-1 / 2}\|T\|_{F}
$$

or (a little stronger)

$$
\left\|w_{i}^{(j)}\right\|_{\infty} \simeq n_{i}^{-1 / 2}
$$

Unfoldings and hardness

Computational complexity problem: everything with tensors is hard [Hillar, Lim '09]

- spectral norm
- eigenvalues/singular values
- low-rank approximations
- etc.

Unfoldings and hardness

Unfolding matrix (size $n^{a} \times n^{b}$)
"Grouping" indices:

$$
T_{i_{1}, \ldots, i_{k}}=M_{\left(i_{1}, \ldots, i_{a}\right),\left(i_{a+1}, \ldots, i_{k}\right)}
$$

Unfoldings and hardness

Unfolding matrix (size $n^{a} \times n^{b}$)
"Grouping" indices:

$$
T_{i_{1}, \ldots, i_{k}}=M_{\left(i_{1}, \ldots, i_{a}\right),\left(i_{a+1}, \ldots, i_{k}\right)}
$$

Tensor completion \Leftarrow Long matrix completion

Unfoldings and hardness

Unfolding matrix (size $n^{a} \times n^{b}$)
"Grouping" indices:

$$
T_{i_{1}, \ldots, i_{k}}=M_{\left(i_{1}, \ldots, i_{a}\right),\left(i_{a+1}, \ldots, i_{k}\right)}
$$

Tensor completion \nRightarrow Long matrix completion

Unfoldings and hardness

Statistical-computational gap:

- NP-hard algorithms [Ghadermarzy et al '19]: tensor-based minimization methods
\rightarrow works until $p=O\left(n^{-(k-1)}\right)$

Unfoldings and hardness

Statistical-computational gap:

- NP-hard algorithms [Ghadermarzy et al '19]: tensor-based minimization methods
\rightarrow works until $p=O\left(n^{-(k-1)}\right)$
- Unfolding-based algorithms [Montanari and Sun '16, Liu and Moitra '20, Cai et al. '21...]
\rightarrow works until $p=O\left(n^{-k / 2}\right)$

Unfoldings and hardness

Statistical-computational gap:

- NP-hard algorithms [Ghadermarzy et al '19]: tensor-based minimization methods
\rightarrow works until $p=O\left(n^{-(k-1)}\right)$
- Unfolding-based algorithms [Montanari and Sun '16, Liu and Moitra '20, Cai et al. '21...]
\rightarrow works until $p=O\left(n^{-k / 2} \times \operatorname{polylog}(n)\right)$

What happens if $p \propto n^{-k / 2}$?

Not a trivial improvement

Running example: rank-one tensor $T=x \otimes x \otimes x, x \in\{-1,1\}^{n}$
Constant "degree": $p=d n^{-3 / 2}$
Typical algorithm:

- unfold \tilde{T} into $A=\operatorname{unfold}_{1,2}(\tilde{T})$
- take the SVD of A (+ postprocessing)

Not a trivial improvement

Figure: $A A^{\top}, d=20$

Not a trivial improvement

Figure: $A A^{\top}, d=20$

Not a trivial improvement

Figure: $A A^{\top}, d=2$

Not a trivial improvement

Figure: $A A^{\top}, d=2$

Where are we so far ?

Recap:

- existing methods to not reach the exact conjectured threshold for tensor completion
- it is not a technical but a conceptual issue
- it suffices to solve long matrix completion

Our solution: non-backtracking wedge matrix

Setting

Long matrix reconstruction:

- Rectangular matrix M of size $n \times m(m>n)$, with SVD

$$
M=\sum_{i=1}^{r} \nu_{i} \phi_{i} \psi_{i}^{\top}
$$

- Masking matrix X with $X_{i j} \sim \operatorname{Ber}(p)$
- Observed matrix:

$$
A=\frac{X \circ M}{P} \text { so that } \mathbb{E}[A]=M
$$

Setting

Long matrix reconstruction:

- Rectangular matrix M of size $n \times m(m>n)$, with SVD

$$
M=\sum_{i=1}^{r} \nu_{i} \phi_{i} \psi_{i}^{\top}
$$

- Masking matrix X with $X_{i j} \sim \operatorname{Ber}(p)$
- Observed matrix:

$$
A=\frac{X \circ M}{P} \text { so that } \mathbb{E}[A]=M
$$

Assumptions:

$$
r, \sqrt{n}\left\|\phi_{i}\right\|_{\infty}=O(\operatorname{polylog}(n))
$$

Non-backtracking wedge matrix

We can view A as a weighted bipartite graph G with vertex sets $V_{1}=[n]$ and $V_{2}=[m]$.

The non-backtracking wedge matrix B is defined on oriented wedges in G

$$
\vec{E}_{2}=\left\{(x, y, z) \in V_{1} \times V_{2} \times V_{1}, z \neq x\right\}
$$

Non-backtracking wedge matrix

We can view A as a weighted bipartite graph G with vertex sets $V_{1}=[n]$ and $V_{2}=[m]$.

The non-backtracking wedge matrix B is defined on oriented wedges in G

$$
\vec{E}_{2}=\left\{(x, y, z) \in V_{1} \times V_{2} \times V_{1}, z \neq x\right\}
$$

Non-backtracking wedge matrix

We can view A as a weighted bipartite graph G with vertex sets $V_{1}=[n]$ and $V_{2}=[m]$.

The non-backtracking wedge matrix B is defined on oriented wedges in G

$$
\vec{E}_{2}=\left\{(x, y, z) \in V_{1} \times V_{2} \times V_{1}, z \neq x\right\}
$$

$\Rightarrow B$ has size $\sim d^{2} n$: independent from m

Non-backtracking wedge matrix

Defined as

$$
B_{e f}= \begin{cases}A_{f_{1} f_{2}} A_{f_{3} f_{2}} & \text { if } e_{3}=f_{1} \text { and } e_{2} \neq f_{2} \tag{1}\\ 0 & \text { otherwise }\end{cases}
$$

Non-backtracking wedge matrix

Defined as

$$
B_{e f}= \begin{cases}A_{f_{1} f_{2}} A_{f_{3} f_{2}} & \text { if } e_{3}=f_{1} \text { and } e_{2} \neq f_{2} \tag{1}\\ 0 & \text { otherwise }\end{cases}
$$

Non-backtracking wedge matrix

Defined as

$$
B_{e f}= \begin{cases}A_{f_{1} f_{2}} A_{f_{3} f_{2}} & \text { if } e_{3}=f_{1} \text { and } e_{2} \neq f_{2} \tag{1}\\ 0 & \text { otherwise }\end{cases}
$$

Weight assignment is a convention!

Thresholds

Two important thresholds:

$$
\vartheta_{1}=\sqrt{\|\operatorname{Var}(A)\|}
$$

- naturally occuring
- likely sharp
- decreases as $d^{-1 / 2}$

Thresholds

Two important thresholds:

$$
\vartheta_{1}=\sqrt{\|\operatorname{Var}(A)\|}
$$

- naturally occuring
- likely sharp
- decreases as $d^{-1 / 2}$

$$
\vartheta_{2}=\|A\|_{\infty}
$$

- less natural
- mostly spurious
- decreases as d^{-1}

Thresholds

Two important thresholds:

$$
\vartheta_{1}=\sqrt{\|\operatorname{Var}(A)\|}
$$

- naturally occuring
- likely sharp
- decreases as $d^{-1 / 2}$

$$
\vartheta_{2}=\|A\|_{\infty}
$$

- less natural
- mostly spurious
- decreases as d^{-1}

Total threshold:

$$
\vartheta=\max \left(\vartheta_{1}, \vartheta_{2}\right)
$$

Our results: eigenvalues

Theorem (S. and Zhu '23)

- (Outliers) For any ν_{i} satistfying $\nu_{i}>\vartheta$, there exists an eigenvalue λ_{i} of B with

$$
\left|\lambda_{i}-\nu_{i}^{2}\right|=O\left(n^{-c}\right)
$$

Our results: eigenvalues

Theorem (S. and Zhu '23)

- (Outliers) For any ν_{i} satistfying $\nu_{i}>\vartheta$, there exists an eigenvalue λ_{i} of B with

$$
\left|\lambda_{i}-\nu_{i}^{2}\right|=O\left(n^{-c}\right)
$$

- (Bulk) All other eigenvalues are asymptotically confined in a circle of radius ϑ^{2}

Results: eigenvalues

Figure: $B, d=2$

Embedding eigenvectors

Need an embedding procedure from $\mathbb{R}^{\vec{E}_{2}}$ to \mathbb{R}^{n}

Embedding eigenvectors

Need an embedding procedure from $\mathbb{R}^{\vec{E}_{2}}$ to \mathbb{R}^{n}

- For a right eigenvector ξ^{R} :

$$
\zeta^{R}(x)=\sum_{e: e_{1}=x} A_{e_{1} e_{2}} A_{e_{3} e_{2}} \xi^{R}(e)
$$

- For a left eigenvector ξ^{L} :

$$
\zeta^{L}(x)=\sum_{e: e_{1}=x} \xi^{L}(e)
$$

Embedding eigenvectors

Need an embedding procedure from $\mathbb{R}^{\overrightarrow{E_{2}}}$ to \mathbb{R}^{n}

- For a right eigenvector ξ^{R} :

$$
\zeta^{R}(x)=\sum_{e: e_{1}=x} A_{e_{1} e_{2}} A_{e_{3} e_{2}} \xi^{R}(e)
$$

- For a left eigenvector ξ^{L} :

$$
\zeta^{L}(x)=\sum_{e: e e_{1}=x} \xi^{L}(e)
$$

Depends on the weight convention !

Our results: eigenvectors

Theorem (S. and Zhu '23)

Assume that $\nu_{i}>\vartheta$, and let $\xi_{i}^{L / R}$ the left/right eigenvectors associated to λ_{i}. Then, there exists a γ_{i} such that

$$
\gamma_{i}=1-O\left(d^{-1}\right)
$$

and

$$
\left|\left\langle\zeta_{i}^{L / R}, \phi_{i}\right\rangle-\sqrt{\gamma_{i}}\right|=O\left(n^{-c}\right)
$$

Our results: eigenvectors

Theorem (S. and Zhu '23)

Assume that $\nu_{i}>\vartheta$, and let $\xi_{i}^{L / R}$ the left/right eigenvectors associated to λ_{i}. Then, there exists a γ_{i} such that

$$
\gamma_{i}=1-O\left(d^{-1}\right)
$$

and

$$
\left|\left\langle\zeta_{i}^{L / R}, \phi_{i}\right\rangle-\sqrt{\gamma_{i}}\right|=O\left(n^{-c}\right)
$$

Weak recovery when $d \rightarrow \infty$

Our results: eigenvectors

Figure: $B, d=2$

Proof idea

- $\operatorname{deg}(y)=2$ w.h.p
- "independent" wedges
- Associated weight:
$W_{e}=A_{x y} A_{z y}$

Proof idea

$$
" \Leftrightarrow "
$$

- $\operatorname{deg}(y)=2$ w.h.p
- "independent" wedges
- Associated weight:
$W_{e}=A_{x y} A_{z y}$
- Erdős-Rényi graph $G \sim \mathcal{G}\left(n, d^{2} / n\right)$
- Associated weight:

$$
W_{e}=A_{X Y} A_{z Y}, Y \sim \operatorname{Unif}([m])
$$

Proof idea

$$
" \Leftrightarrow "
$$

- $\operatorname{deg}(y)=2$ w.h.p
- "independent" wedges
- Associated weight:

$$
W_{e}=A_{x y} A_{z y}
$$

- Erdős-Rényi graph $G \sim \mathcal{G}\left(n, d^{2} / n\right)$
- Associated weight:

$$
W_{e}=A_{X Y} A_{z Y}, Y \sim \operatorname{Unif}([m])
$$

ER with random weights [Stephan and Massoulié '20]

Takeaways and directions

- Does not work for finite aspect ratio $(m=O(n))$: is there a unified spectral algorithm with [Bordenave et al. '21] ?

Takeaways and directions

- Does not work for finite aspect ratio $(m=O(n))$: is there a unified spectral algorithm with [Bordenave et al. '21] ?
- Our algorithm does not recover the right singular vectors of M (consistent with [Montanari and Wu '22])

Takeaways and directions

- Does not work for finite aspect ratio $(m=O(n))$: is there a unified spectral algorithm with [Bordenave et al. '21] ?
- Our algorithm does not recover the right singular vectors of M (consistent with [Montanari and Wu '22])
- We only handle the case $r=\operatorname{polylog}(n)$; what happens when $r=n^{\kappa}$? Can we reach the optimal sample complexity $r d^{3 / 2}$?

Thank you!
arxiv:2304.02077

