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New assumptions

- T has low CP-rank:

T_ZA( e auh)

= r x (N1 + ---+ ng) degrees of freedom

+ Tis delocalized:

ITlloo = (T T n)~21T e

or (a little stronger)

WD = n772



Unfoldings and hardness

Computational complexity problem: everything with tensors is
hard [Hillar, Lim '09]

- spectral norm

- eigenvalues/singular values

- low-rank approximations
- etc.
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Unfoldings and hardness

Statistical-computational gap:

- NP-hard algorithms [Ghadermarzy et al "19]: tensor-based
minimization methods
— works until p = 0(n=(k=1)

- Unfolding-based algorithms [Montanari and Sun 16, Liu
and Moitra '20, Cai et al. '21...]
— works until p = 0(n~=%/2 x polylog(n))

What happens if p oc n=*/2 2



Not a trivial improvement

Running example: rank-onetensorT=x®x® x, x € {—1,1}"
Constant “degree”: p = dn—3/2
Typical algorithm:

- unfold T into A = unfolds »(T)
- take the SVD of A (+ postprocessing)
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Where are we so far ?

Recap:

- existing methods to not reach the exact conjectured
threshold for tensor completion
- It is not a technical but a conceptual issue

- it suffices to solve long matrix completion

n



Our solution: non-backtracking
wedge matrix




Setting

Long matrix reconstruction:

- Rectangular matrix M of size n x m (m >>n), with SVD
r
M=>" v
i=1

- Masking matrix X with X;; ~ Ber(p)
+ Observed matrix:

XoM

A= so that E[A]l=M
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Setting

Long matrix reconstruction:

- Rectangular matrix M of size n x m (m >>n), with SVD
r
M=>" v
i=1

- Masking matrix X with X;; ~ Ber(p)
+ Observed matrix:

XoM

A= so that E[A]l=M

Assumptions:

r,vnll¢illsc = O(polylog(n))

12



Non-backtracking wedge matrix

We can view A as a weighted bipartite graph G with vertex sets
Vi = [n] and V, = [m].

The non-backtracking wedge matrix B is defined on oriented
wedges in G

Ez = {(X,y,Z) e Vi xVyxVqyz #X}
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Non-backtracking wedge matrix

We can view A as a weighted bipartite graph G with vertex sets
Vi = [n] and V, = [m].

The non-backtracking wedge matrix B is defined on oriented
wedges in G

Ez = {(X,y,Z) e Vi xVyxVqyz #X}

= B has size ~ d? n: independent from m
13



Non-backtracking wedge matrix

Defined as

B = Af1f2Af3f2 if €3 :f1 and e 75]62
ey — 5
0 otherwise
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Non-backtracking wedge matrix

Defined as

B - Af1f2Af3f2 if e3 = f1 and e 7é fz
=
0 otherwise

& 5

Weight assignment is a convention !
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- naturally occuring
- likely sharp
- decreases as d~/2
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Thresholds

Two important thresholds:

U1 = V[Var(A)] U2 = [[Alloo

- naturally occuring - less natural
- likely sharp - mostly spurious
- decreases as d~/2 - decreases as d™’

Total threshold:

¥ = max(th, %)
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Our results: eigenvalues

Theorem (S. and Zhu '23)

- ( ) For any v; satistfying v; > ¥, there exists an eigen-
value \; of B with

i = v = 0(n™°)

- ( ) All other eigenvalues are asymptotically confined in
a circle of radius ¥?
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Embedding eigenvectors

Need an embedding procedure from RE to R”

- For a right eigenvector &F:

CR(X) = Z A€1€2A€3€2§R(e)

ee1=x

- For a left eigenvector &5

¢ = €

e.e1=

Depends on the weight convention !



Our results: eigenvectors

Theorem (S. and Zhu '23)

Assume that v; > 9, and let §,.L/R the left/right eigenvectors

associated to A;. Then, there exists a ~; such that
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Our results: eigenvectors

Theorem (S. and Zhu '23)

Assume that v; > 9, and let §,.L/R the left/right eigenvectors

associated to A;. Then, there exists a ~; such that
7 =1-0(d™")
and

("%, ) — v/ = 0(n~°)

Weak recovery when d — oo



Our results: eigenvectors
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- deg(y) =2w.hp
- “independent” wedges

- Associated weight:
We = A)(yAzy
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AV

- deg(y) =2w.hp
- “independent” wedges

- Associated weight:
We = A)(yAzy

C v) @

- Erdds-Renyi graph

G ~ G(n,d?/n)

- Associated weight:

We = AXyAZY7 Y a Unlf([m])
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© deg(y) =2 w.h.p - Erdés-Rényi graph

- “independent” wedges G ~ G(n,d?/n)
- Associated weight:

- Associated weight:
We = AXyAZY7 Y s Unlf([m])

We = A)(yAzy
ER with random weights [Stephan and Massoulié '20]
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Takeaways and directions

- Does not work for finite aspect ratio (m = O(n)): is there a
unified spectral algorithm with [Bordenave et al. '21] ?
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Takeaways and directions

- Does not work for finite aspect ratio (m = O(n)): is there a
unified spectral algorithm with [Bordenave et al. '21] ?

- Our algorithm does not recover the right singular vectors
of M (consistent with [Montanari and Wu '22])

- We only handle the case r = polylog(n); what happens
when r = n® ? Can we reach the optimal sample
complexity rd/2?

22



Thank you'!
arxiv:2304.02077
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