Sparse random hypergraphs: Non-backtracking spectra and community detection

Ludovic Stephan

École Polytechnique Fédérale de Lausanne

Yizhe Zhu University of California, Irvine

What is community detection?

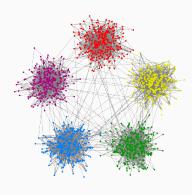


Figure taken from [Abbe '18]

What is community detection?

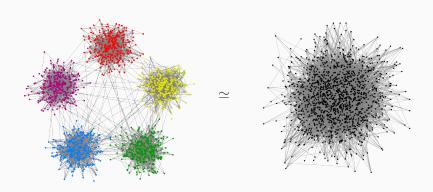


Figure: Scrambled and unscrambled graph

Figure taken from [Abbe '18]

A generative model : the Stochastic Block Model (SBM)

Generates a random graph with *n* vertices, *k* blocks.

Parameters: $P \in \mathbb{R}^{k \times k}$, $\pi \in \mathbb{R}^k$

 \cdot Type assignment σ i.i.d such that

$$\mathbb{P}(\sigma(\mathsf{X})=\mathsf{i})=\pi_\mathsf{i}$$

· Graph generation: independent edges,

$$\mathbb{P}((x,y)\in E)=\frac{P_{\sigma(x)\sigma(y)}}{n}$$

A generative model : the Stochastic Block Model (SBM)

Generates a random graph with *n* vertices, *k* blocks.

Parameters: $P \in \mathbb{R}^{k \times k}$, $\pi \in \mathbb{R}^k$

 \cdot Type assignment σ i.i.d such that

$$\mathbb{P}(\sigma(x) = i) = \pi_i$$

· Graph generation: independent edges,

$$\mathbb{P}((x,y)\in E)=\frac{P_{\sigma(x)\sigma(y)}}{n}$$

Goal: recover σ from $G \sim SBM(n, \pi, P)$

Simple case:
$$k = 2$$
, $\pi_i \equiv 1/2$, $P = \begin{pmatrix} p & q \\ q & p \end{pmatrix}$

$$\mathbb{E}[A] = \frac{1}{n} \begin{bmatrix} p & \dots & p & q & \dots & q \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ p & \dots & p & q & \dots & q \\ \hline q & \dots & q & p & \dots & p \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ q & \dots & q & p & \dots & p \end{bmatrix}$$

Simple case:
$$k = 2$$
, $\pi_i \equiv 1/2$, $P = \begin{pmatrix} p & q \\ q & p \end{pmatrix}$

$$\mathbb{E}[A] = \frac{1}{n} \begin{bmatrix} p & \dots & p & q & \dots & q \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ p & \dots & p & q & \dots & q \\ \hline q & \dots & q & p & \dots & p \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ q & \dots & q & p & \dots & p \end{bmatrix} \quad v_1 = \begin{bmatrix} 1 \\ \vdots \\ 1 \\ \vdots \\ 1 \end{bmatrix}$$

$$\mu_1 = \frac{p+c}{2}$$

Simple case:
$$k = 2$$
, $\pi_i \equiv 1/2$, $P = \begin{pmatrix} p & q \\ q & p \end{pmatrix}$

$$\mathbb{E}[A] = \frac{1}{n} \begin{bmatrix} p & \dots & p & q & \dots & q \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ p & \dots & p & q & \dots & q \\ \hline q & \dots & q & p & \dots & p \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ q & \dots & q & p & \dots & p \end{bmatrix} \quad v_1 = \begin{bmatrix} 1 \\ \vdots \\ 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} \quad v_2 = \begin{bmatrix} 1 \\ \vdots \\ 1 \\ -1 \\ \vdots \\ -1 \end{bmatrix}$$

$$\mu_1 = \frac{p+q}{2} \quad \mu_2 = \frac{p-q}{2}$$

In general:

• eigenvalues of $\mathbb{E}[A]$ the same as

$$M = P \operatorname{diag}(\pi)$$

· associated eigenvectors constant on the clusters

In general:

 \cdot eigenvalues of $\mathbb{E}[A]$ the same as

$$M = P \operatorname{diag}(\pi)$$

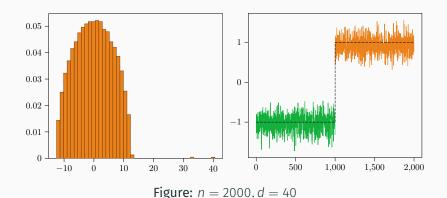
associated eigenvectors constant on the clusters

Constant average degree hypothesis:

$$\sum_{j} P_{ij} \pi_j = d \quad \forall i \in [k]$$

 \Rightarrow M1 = d1, $\mu_1 = d$, v_1 uninformative

Spectral methods: high degree



When $p, q = \Omega(\log(n))$: o(n) misclassifications by k-means

Feige-Ofek '05, Lei-Rinaldo '13

Spectral methods: low degree

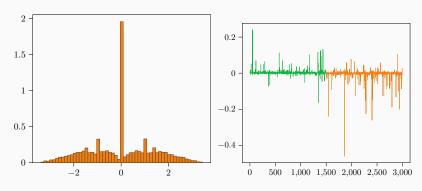


Figure: n = 3000, d = 2

High-degree vertices dominate the spectrum

Krivelevich-Sudakov '01, Benaych-Georges et al. '19

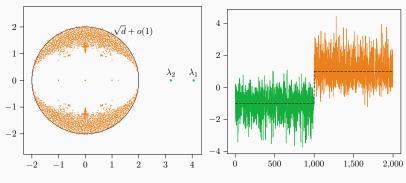
The non-backtracking matrix

Indexed by directed edges

$$\vec{E} = \{(x, y) \mid \{x, y\} \in E\}$$

$$B_{\vec{e},\vec{f}} = \begin{cases} 1 & \text{if } e_2 = f_1 \text{ and } e_1 \neq f_2 \\ 0 & \text{otherwise} \end{cases}$$

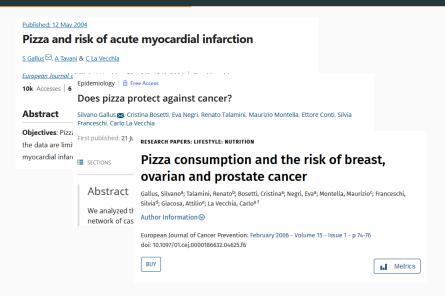
Spectral redemption theorem



$$\begin{cases} \lambda_i(B) = \mu_i + o(1) & \text{if } \mu_i^2 > d \\ |\lambda_i(B)| \le \sqrt{d} & \text{otherwise} \end{cases}$$

Krzakala et al '13, Bordenave et al '15

Higher-dimensional relations



Hypergraphs

$$G = (V, H)$$
 with $H \subseteq 2^V$, q-uniform if $H \subseteq {V \choose q}$.

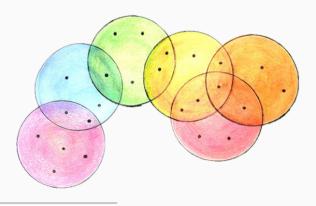


Figure from R. Mulas Non-uniform hypergraphs: Chodrow et al. '22

Immediate generalization of the SBM:

Affinity tensor P of dimension q

$$\mathbb{P}(\{x_1,\ldots,x_q\}\in H)=\frac{P_{\underline{\sigma}(x)}}{\binom{n}{q-1}},$$

where $\underline{\sigma}(x) = (\sigma(x_1), \dots, \sigma(x_q)).$

Tensor representation

Intuitive way to represent adjacencies: adjacency tensor T

$$T_{x_1,...,x_q} = 1 \quad \Leftrightarrow \quad \{x_1,\ldots,x_q\} \in H$$

Tensor representation

Intuitive way to represent adjacencies: adjacency tensor T

$$T_{X_1,...,X_q} = 1 \quad \Leftrightarrow \quad \{X_1,\ldots,X_q\} \in H$$

Problem: everything with tensors is hard¹!

¹Hillar and Lim '09

Adjacency matrix

Defined as

$$A_{xy} = |\{e \in H \mid x, y \in e\}|$$

Same properties as before:

• $\mathbb{E}[A]$ is low-rank, eigenvalues

$$d \ge \mu_2 \ge \cdots \ge \mu_k$$

• Spectral method on A fails for d = O(1)

Non-backtracking matrix

Defined on pointed edges

$$\vec{H} = \{(x, e) | e \in H, x \in e\}$$

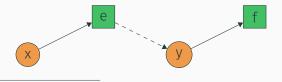
$$B_{(x,e),(y,f)} = \begin{cases} 1 & \text{if } y \in e, \ y \neq x, \ f \neq e \\ 0 & \text{otherwise} \end{cases}$$

Non-backtracking matrix

Defined on pointed edges

$$\vec{H} = \{(x, e) | e \in H, x \in e\}$$

$$B_{(x,e),(y,f)} = \begin{cases} 1 & \text{if } y \in e, \ y \neq x, \ f \neq e \\ 0 & \text{otherwise} \end{cases}$$



Storm '06

Spectral redemption (again)

Same reasoning as the q=2 case:

Conjecture (Angelini et al., '15)

lf

$$(q-1)\mu_2^2 > d$$
,

both BP and a spectral method based on B recover the communities.

Spectral redemption theorem (again)

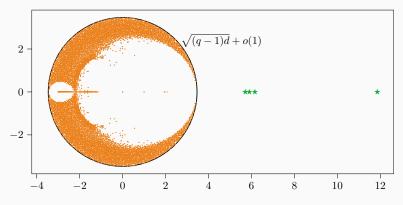


Figure: n = 6000, k = q = 4, d = 4, $\mu_2 = 2$

S.-Zhu, '22

Dimension reduction

Two problems:

- B has size $q|H| \sim qdn$, can be very large!
- · need an embedding procedure into \mathbb{R}^n

We do both at once!

Angelini et al. '15

Dimension reduction

Two problems:

- B has size $q|H| \sim qdn$, can be very large!
- need an embedding procedure into \mathbb{R}^n

We do both at once!

Define

$$\tilde{B} = \begin{pmatrix} 0 & (D-I) \\ -(q-1)I & A - (q-2)I \end{pmatrix},$$

with D the diagonal degree matrix:

$$D_{xx} = |\{e \in H \mid x \in e\}| = [A1]_x$$

Angelini et al. '15

Spectrum of \tilde{B}

Ihara-Bass extension:

Theorem (S.-Zhu '22)

For any $z \in \mathbb{C}$,

$$\det(B - zI) = (z - 1)^{(q - 1)m - n}(z + (q - 1))^{m - n}\det(\tilde{B} - zI)$$

As a result,

$$Sp(B) = Sp(\tilde{B}) \cup \{1, -(q-1)\}$$

Bass '92 for q=2, Storm '06 for regular graphs

Eigenvectors of \tilde{B}

Theorem (S.-Zhu '22)

Assume that $(q-1)\mu_i^2 > d$, and let $\begin{pmatrix} u_i \\ v_i \end{pmatrix}$ an eigenvector associated to $\lambda_i(\tilde{B})$. Then there exists an eigenvector ϕ_i of $\mathbb{E}[A]$ such that

$$\langle v_i, \phi_i \rangle = \sqrt{\frac{1 - \tau_i}{1 + \frac{q - 2}{(q - 1)\mu_i}}} + o(1)$$

 τ_i is the inverse SNR for μ_i :

$$\tau_i = \frac{d}{(q-1)\mu_i^2} < 1$$

Illustration

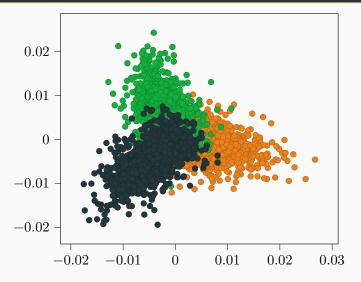


Figure: Plot of $(v_2(x), v_3(x))$ for $x \in V$. n = 20000, q = d = 4, k = 3.

