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What is community detection ?

Figure taken from [Abbe "18]



What is community detection ?

Figure: Scrambled and unscrambled graph

Figure taken from [Abbe "18]



A generative model : the Stochastic Block Model (SBM)

Generates a random graph with n vertices, k blocks.

Parameters: P € RF*k 7 e RF

- Type assignment o i.i.d such that

- Graph generation: independent edges,

PO’ g
B((x,y) € F) = 00

SBM definition : Holland et al. '84



A generative model : the Stochastic Block Model (SBM)

Generates a random graph with n vertices, k blocks.

Parameters: P € RF*k 7 e RF

- Type assignment o i.i.d such that

- Graph generation: independent edges,

PO’ g
B((x,y) € F) = 00

Goal: recover o from G ~ SBM(n, w, P)

SBM definition : Holland et al. '84



Spectral methods

Simple case: k=2, =1/2, P = (
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Spectral methods

Simple case: k=2, 1, =1/2, P = (p q>
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Spectral methods

In general :

- eigenvalues of E[A] the same as
M = P diag(m)

- associated eigenvectors constant on the clusters



Spectral methods

In general :

- eigenvalues of E[A] the same as
M = P diag(m)
- associated eigenvectors constant on the clusters

Constant average degree hypothesis:

ZPUWJ =d Vie [k]
J

= M1=d1, u1 = d, v; uninformative



Spectral methods: high degree
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Figure: n = 2000,d = 40

When p, g = Q(log(n)): o(n) misclassifications by k-means

Feige-Ofek '05, Lei-Rinaldo 13



Spectral methods: low degree
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Figure: n = 3000,d =2

High-degree vertices dominate the spectrum

Krivelevich-Sudakov '01, Benaych-Georges et al. "19



The non-backtracking matrix

Indexed by directed edges

E={(xy) [ {xy}€E}

- {1 ife, =f;and ey # f5

0 otherwise

/ .\‘  —
v X



Spectral redemption theorem

Vd+o(1)
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Figure: n=2000, d=4
Ai(B) = pi+o(1) ifpur>d
IA\i(B)| < Vd otherwise

Krzakala et al "13, Bordenave et al "15



Higher-dimensional relations

Published: 12 May 2004

Pizza and risk of acute myocardial infarction

S Gallus &, A Tavani & C La Vecchia
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Does pizza protect against cancer?
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Hypergraphs

G = (V,H) with H € 2", if HC <V>

Figure from R. Mulas
Non-uniform hypergraphs: Chodrow et al. '22
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HSBM

Immediate generalization of the SBM:

Affinity tensor P of dimension g

Po
]P’({Xh...,xq}el-/):%

where g(x) = (o(x1),...,0(Xq))-

n



Tensor representation

Intuitive way to represent adjacencies: adjacency tensor T

Daxg =1 & {x1,... ,Xq} cH
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Tensor representation

Intuitive way to represent adjacencies: adjacency tensor T

Daxg =1 & {x1,... ,Xq} cH

Problem: everything with tensors is hard'!

"Hillar and Lim '09
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Adjacency matrix

Defined as
Ay =[{eeH|xyee}

Same properties as before:
- E[A] is low-rank, eigenvalues
d> [y > > g

- Spectral method on A fails for d = O(1)

13



Non-backtracking matrix

Defined on pointed edges

A={(x,e)|ecH,xee}

. )1 ifyee y#EX ffe
G 0 otherwise

Storm '06
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Non-backtracking matrix

Defined on pointed edges

A={(x,e)|ecH,xee}

. )1 ifyee y#EX ffe
G 0 otherwise

Storm '06
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Spectral redemption (again)

Same reasoning as the g = 2 case:

Conjecture (Angelini et al., "15)
If
2
My > d7

both BP and a spectral method based on B recover the
communities.

15



Spectral redemption theorem (again)

2 —
0 *
_2 ,
T T T T T T T T T
—4 -2 0 2 4 6 8 10 12
Figure: n = 6000, kR=q=4,d =4, pup =2
S-Zhu, 22



Dimension reduction

Two problems:

- B has size g|H| ~ gdn, can be very large !

- need an embedding procedure into R"

We do both at once !

Angelini et al. 15



Dimension reduction

Two problems:

- B has size g|H| ~ qdn, can be very large !

- need an embedding procedure into R"

We do both at once !

B_< 0 (D—I))
—(@-N A-(q-2)1)°

with D the diagonal degree matrix:

Define

Angelini et al. 15



Spectrum of B

lhara-Bass extension:

Theorem (S.-Zhu '22)
Forany z € C,

det(B—zl) = (z — 1)4=DM="(z 4 (g — 1)) " det(B — zI)

As a result,
Sp(B) = Sp(B) U {1,—(q — 1)}

Bass '92 for g=2, Storm '06 for regular graphs



Eigenvectors of B

Theorem (S.-Zhu '22)

Assume that (g — T)M% > d, and let (u,) an eigenvector

|

associated to Aj(B). Then there exists an eigenvector ¢; of
E[A] such that

1— 7

Vin i) = |~ +0(1)
LR =
7 1S the inverse SNR for p;:
d
T = 5 <1



Illustration
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Figure: Plot of (v,(x),vs(x)) forx € V. n =20000,q =d = 4, R =3.
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Thank you!



