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Setting

Teacher function:

yν = f (xν,W ∗) +
√

∆ζ,

withW ∗ ∈ Rd×k and

f (xν,W ∗) = 1
k

k∑
r=1

σ

(
w∗>
r xν√
d

)
.

Learned by a student two-layer neural network with weightsW ∈ Rd×p

f̂ (x,W ) = 1
p

p∑
j=1

σ

(
w>
j x√
d

)
through Stochastic Gradient Descent (SGD):

wν+1
j = wν

j − γ∇wj

(
yν − f̂ (xν,W )

)2

SGD aims to directly minimize the population risk R:

R(W ,W ∗) ≡ Ex
[(
f (x,W ∗) − f̂ (x,W )

)2
]

Local fields and overlaps

Everything in f and f̂ happens through the local fields

λ∗
r = w∗>

r xν√
d

, λj =
w>
j x

ν

√
d
.

If x ∼ N (0, 1) everything is characterized through the order parameters

Qν ≡ E
[
λνλν>

]
= 1
d
W ν>W ν ,

M ν ≡ E
[
λνλ∗ν>

]
= 1
d
W ν>W ∗

P ≡ E
[
λ∗νλ∗ν>

]
= 1
d
W ∗>W ∗ ,

collected into the overlap matrix

Ων =
(

Qν M ν

M ν> P

)

Update equations for the overlaps

The updates for the overlap matrix read

qν+1
j` − qνj` = γeff

d

(
σ′(λνj )λν` + σ′(λν` )λνj

)
Eν︸ ︷︷ ︸

learning

+ γ2
eff

d
σ′(λνj )σ′(λν` )(Eν)2︸ ︷︷ ︸

variance

,

mν+1
jr −mν

jr = γeff
d
σ′(λνj ) Eν λ∗ν

r︸ ︷︷ ︸
learning

,

(1)

where γeff = γ/p and
Eν = yν − f̂ (xν,W ν)

Learning term ⇐⇒ Gradient flow approximation

Scaling of γeff ⇐⇒ Relative weight of learning and variance terms

Theorem: Rigorous ODE approximation

Define

δt = γeff ∨ γ2
eff

d
,

and let ψ : R(p+k)×(p+k) → R(p+k)×(p+k) be the expectation of the RHS of (1):

ψ(Ω)ij = Eλ,λ∗∼N (0,Ω)

[
Ων+1
ij − Ων

ij

δt

]

Then Ω converges to the solution Ω̄ of

dΩ̄

dt
= ψ(Ω̄),

with rate

‖Ων − Ω̄(νδt)‖∞ ≤
C(t) ln(p)

√
γeff ∨ γ2

eff√
d

Extension of Saad & Solla for p � 1 with nonasymptotic bound

References

[1] Sebastian Goldt, Madhu Advani, Andrew M Saxe, Florent Krzakala, and Lenka Zdeborová. Dynamics of stochastic

gradient descent for two-layer neural networks in the teacher-student setup. In H. Wallach, H. Larochelle,

A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems,

volume 32. Curran Associates, Inc., 2019.

[2] David Saad and Sara A. Solla. On-line learning in soft committee machines. Phys. Rev. E, 52:4225–4243, Oct 1995.

Phase transitions in γeff

γeff � 1, perfect learning:
ψ(Ω) = ψGF(Ω) + o(1)

Equivalent to gradient flow approximations

γeff � 1, variance dominates:
ψ(Ω) = ψvar(Ω) + o(1)

No learning terms: M ν ≈ M0

γeff ∝ 1: Saad & Solla line

ψ(Ω) = ψGF(Ω) + ψvar(Ω)

Some learning, then a plateau with asymptotic risk ∝ γ∆

0 100 101 102 103 104

C = aXC

10−7

10−6

10−5

10−4

10−3

10−2

10−1

R
We� � 1
We� ∝ 1
We� � 1

Figure 1. Illustration of the different regimes of ODEs

Interplay between γ and p

Phase transitions happen in term of γeff = γ/p, so we can make a two-dimensional phase
diagram
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Figure 2. Phase diagram with γ ∼ d−δ, p ∼ dκ

Overparametrization ⇐⇒ Tuning the learning rate

Sample complexity
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Figure 3. Effect of γ on convergence times

Tradeoff between achived minima and sample complexity


