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MAIN ANALYTICAL RESULT

Theorem 1. Assuming the following one-dimensional CLT to hold:

lim
, →

sup
𝜽 ∈ 

𝔼 𝜑 𝜽 𝒙  − 𝔼 𝜑 𝜽 𝒈 = 0,

with 𝒈  ~ ∑ 𝜌∈𝒞 𝒩 𝝁 , 𝚺 , 𝝁 = 𝔼𝒛~𝒩 𝝁 ,𝜮 Ψ 𝒛 , 
𝚺 = 𝔼𝒛~𝒩 𝝁 ,𝜮 Ψ 𝒛 − 𝝁 Ψ 𝒛 − 𝝁 and 𝒙 as in 
3., for suitable regularity conditions on the loss and the labelling 
function 𝜂 and for any bounded Lipshitz function Φ: ℝ → ℝ, we 
have:

lim
, →

𝔼 Φ ℛ∗ 𝑿, 𝒚 𝑿  − 𝔼 Φ ℛ∗ 𝑮, 𝒚 𝑮 = 0 ,

with 𝑦 = 𝜂 𝜽∗ 𝒙 , 𝜖 , 𝜽∗ ∈ 𝑆  and 𝜖 i.i.d. noise. In particular:

Lemma 1. In the random label setting, if the loss is symmetric, 
e.g. ℓ 𝑥, 𝑦 = ℓ −𝑥, −𝑦 for 𝑥, y ∈ ℝ, the limiting value 𝜀 of 
the risk is independent from the means, that is: 

𝜀 𝝆, 𝑴, 𝜮⊗ = 𝜀 𝝆, 𝟎, 𝜮⊗ ,

with 𝝆 ∈ 0,1 being the probability vector with entries 𝜌 , 
𝑴 ∈ ℝ × the matrix of means and 𝜮⊗ ∈ ℝ × × the 
concatenation of covariance matrices with rows 𝜮 .

Theorem 2. Given the assumptions in Lemma 1, and assuming 
the covariance matrices to be homogeneous, e.g. 𝜮 = 𝜮 for all 
𝑐 ∈ 𝒞, the asymptotic risk of a Gaussian Mixture is equivalent to 
that of a single Gaussian:

𝜀 𝝆, 𝑴, 𝜮⊗ = 𝜀  𝟎, 𝜮 .

Theorem 3. Consider the same assumptions as in Theorem 2, if 
the minimizer is unique and the data matrix is full-rank, the 
asymptotic minimal loss for Gaussian data does not depend on 
the covariance for 𝜆 = 0.

Theorem 4. In the specific case of ridge regression, when 𝜆 →
0 ,  we have:

lim
→

𝜀 𝝆, 𝑴, 𝜮⊗ =
1

2
1 −

1

𝛼
,

for any choice of 𝝆, 𝑴 and 𝜮⊗.
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Training loss as a function of 𝑛/𝑝 at 𝜆 = 10 . The black solid line 
represents the outcome of the theoretical prediction for 𝜮 equal to 
the identity matrix 𝑰. Colored dots refer to numerical simulations 
on MNIST pre-processed with Gaussian random features and error 
function non-linearity (blue dots), fashion-MNIST pre-processed 
with wavelet scattering transform (red dots), grayscale CIFAR10 
pre-processed with Gaussian random features and relu non-
linearity (green dots) and a mixture of two Gaussians with 𝝁 / =

±1, 0, … 0 , 𝜮 / = 𝑰 and 𝜌 , = 1/2 (orange dots). 

Training loss as a function of 𝑛/𝑝 at finite 𝜆. The colored dots 
refer to numerical simulations on the same datasets of the 
previous plot. The black solid lines correspond to the theoretical 
predictions of the Gaussian Covariate model with 𝜮 being the 
covariance matrix of the corresponding dataset.

HOMOGENITY ASSUMPTION

Input covariance matrices of grayscale CIFAR10 pre-processed with 
wavelet scattering transform. The covariances are conditioned on 
the true labels, e.g. airplane (rightmost), automobile (middle) and 
truck (rights most). Lighter colors refer to stronger correlations.  

While classical in many theoretical settings, the assumption of 
i.i.d. Gaussian inputs is often perceived as a strong limitation in 
the analysis of high-dimensional learning problems, out-of-touch 
with real-world practice. In this study, we redeem this line of 
work in the case of generalized linear classification with random 
labels. Our main contribution is a rigorous proof that data 
coming from a range of generative models in high-dimension 
have the same minimum training loss as Gaussian data with 
corresponding data covariance.

We consider a dataset 𝒟 = 𝒙 , 𝑦 , where 𝒙 ∈ ℝ are the 
input vectors and 𝑦 ∈ −1,1  the associated labels. On this 
dataset, we study the corresponding linear classification 
problem in the high-dimensional limit, e.g. 𝑛, 𝑝 → ∞ with α =

~ 𝑂 1 , and defined by the following empirical risk 

minimization:

ℛ∗ 𝑿, 𝒚 = inf
𝜽 ∈ 

1

𝑛
ℓ 𝜽 𝒙 , 𝑦 +

𝜆

2
𝜽  ,

where 𝜆 is the regularization strength and 𝜽 is the vector of 
the learning model parameters, living in a compact subset 𝑆
of ℝ . In particular, we mainly focus on the random label 
setting 𝑦  ~ 𝛿 + 𝛿 and we consider the following 
three types of input data models:

1. The Gaussian Covariate (gc) model. In this case, we 
independently sample the input vectors from a Gaussian 
distribution, e.g. 𝒙  ~ 𝒩 𝟎, 𝜮 ;

2. The Gaussian Mixture (gm) model. In this case, we 
independently sample the input vectors from a mixture of 𝐾
different Gaussians, e.g. 𝒙  ~ ∑ 𝒩 𝝁 , 𝜮∈𝒞 , with 𝒞 ≡
 1, … , 𝐾 indexing the 𝐾 Gaussian clouds;

3. The Neural Network Generative (nn) model. In this case, 
we first sample a latent vector from a Gaussian Mixture 
distribution, e.g.  𝒛  ~ ∑ 𝒩 𝝁 , 𝜮∈𝒞 .  We then generate the 
input vectors as:

𝒙 = Ψ 𝒛

where Ψ is the function parametrized by a neural network.

ℛ∗ 𝑿, 𝒚 𝑿
ℙ
→ 𝜀  ⇔ ℛ∗ 𝑮, 𝒚 𝑮

ℙ
→ 𝜀 ,  ∀𝜀  ∈ ℝ


