

# GAUSSIAN UNIVERSALITY OF LINEAR CLASSIFIERS WITH RANDOM LABELS IN HIGH-DIMENSION

F. Gerace<sup>1</sup>, F. Krzakala<sup>2</sup>, B. Loureiro<sup>2</sup>, L. Stephan<sup>2</sup>, L. Zdeborová<sup>2</sup>

<sup>1</sup> International School of Advanced Studies (SISSA), Trieste, Italy <sup>2</sup> École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

### INTRODUCTION

While classical in many theoretical settings, *the assumption of i.i.d. Gaussian inputs* is often perceived as a strong limitation in the analysis of high-dimensional learning problems, out-of-touch with real-world practice. In this study, we redeem this line of work in the case of generalized linear classification with random labels. Our main contribution is a *rigorous proof* that data coming from a range of generative models in high-dimension have the same minimum training loss as Gaussian data with corresponding data covariance.

## THE SETTING

We consider a dataset  $\mathcal{D} = \{x_i, y_i\}_{i=1}^n$ , where  $x_i \in \mathbb{R}^p$  are the input vectors and  $y_i \in \{-1,1\}$  the associated labels. On this dataset, we study the corresponding linear classification problem in the high-dimensional limit, e.g.  $n, p \to \infty$  with  $\alpha = \frac{n}{p} \sim O(1)$ , and defined by the following empirical risk minimization:

$$\widehat{\mathcal{R}}_n^*(\boldsymbol{X}, \boldsymbol{y}) = \inf_{\boldsymbol{\theta} \in S_p} \frac{1}{n} \sum_{i=1}^n \ell\left(\boldsymbol{\theta}^t \boldsymbol{x}_i, y_i\right) + \frac{\lambda}{2} \|\boldsymbol{\theta}\|_2^2,$$

where  $\lambda$  is the regularization strength and  $\boldsymbol{\theta}$  is the vector of the learning model parameters, living in a compact subset  $S_p$  of  $\mathbb{R}^p$ . In particular, we mainly focus on the random label setting  $y_i \sim \left(\frac{1}{2}\right)(\delta_{+1} + \delta_{-1})$  and we consider the following three types of input data models:

**1.** The Gaussian Covariate (gc) model. In this case, we independently sample the input vectors from a Gaussian distribution, e.g.  $x_i \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma})$ ;

**2.** The Gaussian Mixture (gm) model. In this case, we independently sample the input vectors from a mixture of *K* different Gaussians, e.g.  $x_i \sim \sum_{c \in C} \mathcal{N}(\mu_c, \Sigma_c)$ , with  $C \equiv \{1, ..., K\}$  indexing the *K* Gaussian clouds;

**3.** The Neural Network Generative (nn) model. In this case, we first sample a latent vector from a Gaussian Mixture distribution, e.g.  $z_i \sim \sum_{c \in C} \mathcal{N}(\mu_c, \Sigma_c)$ . We then generate the input vectors as:

$$\boldsymbol{x}_i = \Psi_{\rm nn}(\boldsymbol{z}_i)$$

where  $\Psi_{nn}$  is the function parametrized by a neural network.

### MAIN ANALYTICAL RESULT

**Theorem 1.** Assuming the following one-dimensional CLT to hold:

$$\lim_{n,p\to\infty}\sup_{\boldsymbol{\theta}\in S_p}\left|\mathbb{E}[\varphi(\boldsymbol{\theta}^t\boldsymbol{x})]-\mathbb{E}[\varphi(\boldsymbol{\theta}^t\boldsymbol{g})]\right|=0,$$

with  $\boldsymbol{g}_i \sim \sum_{c \in \mathcal{C}} \rho_c \, \mathcal{N}(\boldsymbol{\mu}_c^{nn}, \boldsymbol{\Sigma}_c^{nn}), \boldsymbol{\mu}_c^{nn} = \mathbb{E}_{\boldsymbol{z} \sim \mathcal{N}(\boldsymbol{\mu}_c, \boldsymbol{\Sigma}_c)}[\Psi_{nn}(\boldsymbol{z})],$   $\boldsymbol{\Sigma}_c^{nn} = \mathbb{E}_{\boldsymbol{z} \sim \mathcal{N}(\boldsymbol{\mu}_c, \boldsymbol{\Sigma}_c)}[(\Psi_{nn}(\boldsymbol{z}) - \boldsymbol{\mu}_c^{nn})(\Psi_{nn}(\boldsymbol{z}) - \boldsymbol{\mu}_c^{nn})^t]$  and  $\boldsymbol{x}_i$  as in **3.**, for suitable regularity conditions on the loss and the labelling function  $\eta$  and for any bounded Lipshitz function  $\Phi: \mathbb{R} \to \mathbb{R}$ , we have:

$$\lim_{n,p\to\infty} \left| \mathbb{E} \left[ \Phi \left( \hat{\mathcal{R}}_n^* (\boldsymbol{X}, \boldsymbol{y}(\boldsymbol{X})) \right) \right] - \mathbb{E} \left[ \Phi \left( \hat{\mathcal{R}}_n^* (\boldsymbol{G}, \boldsymbol{y}(\boldsymbol{G})) \right) \right] \right| = 0$$

with  $y_i = \eta(\boldsymbol{\theta}_*^t \boldsymbol{x}_i, \epsilon_i), \boldsymbol{\theta}_* \in S_p$  and  $\epsilon_i$  i.i.d. noise. In particular:

$$\hat{\mathcal{R}}_{n}^{*}(\boldsymbol{X},\boldsymbol{y}(\boldsymbol{X})) \stackrel{\mathbb{P}}{\rightarrow} \varepsilon_{gm} \iff \hat{\mathcal{R}}_{n}^{*}(\boldsymbol{G},\boldsymbol{y}(\boldsymbol{G})) \stackrel{\mathbb{P}}{\rightarrow} \varepsilon_{gm}, \ \forall \varepsilon_{gm} \in \mathbb{R}$$

**Lemma 1.** In the random label setting, if the loss is symmetric, e.g.  $\ell(x, y) = \ell(-x, -y)$  for  $x, y \in \mathbb{R}$ , the limiting value  $\varepsilon_{gm}$  of the risk is independent from the means, that is:

$$\varepsilon_{gm}(\boldsymbol{\rho}, \boldsymbol{M}, \boldsymbol{\Sigma}^{\otimes}) = \varepsilon_{gm}(\boldsymbol{\rho}, \boldsymbol{0}, \boldsymbol{\Sigma}^{\otimes}),$$

with  $\boldsymbol{\rho} \in [0,1]^K$  being the probability vector with entries  $\rho_c$ ,  $\boldsymbol{M} \in \mathbb{R}^{K \times p}$  the matrix of means and  $\boldsymbol{\Sigma}^{\otimes} \in \mathbb{R}^{K \times p \times p}$  the concatenation of covariance matrices with rows  $\boldsymbol{\Sigma}_c$ .

**Theorem 2.** Given the assumptions in Lemma 1, and assuming the covariance matrices to be homogeneous, e.g.  $\Sigma_c = \Sigma$  for all  $c \in C$ , the asymptotic risk of a Gaussian Mixture is equivalent to that of a single Gaussian:

$$\varepsilon_{gm}(\boldsymbol{\rho}, \boldsymbol{M}, \boldsymbol{\Sigma}^{\otimes}) = \varepsilon_{gc}(\boldsymbol{0}, \boldsymbol{\Sigma}).$$

**Theorem 3.** Consider the same assumptions as in **Theorem 2**, if the minimizer is unique and the data matrix is full-rank, the asymptotic minimal loss for Gaussian data does not depend on the covariance for  $\lambda = 0$ .

**Theorem 4.** In the specific case of ridge regression, when  $\lambda \rightarrow 0^+$ , we have:

$$\lim_{\lambda \to 0^+} \varepsilon_{gm}(\boldsymbol{\rho}, \boldsymbol{M}, \boldsymbol{\Sigma}^{\otimes}) = \frac{1}{2} \left( 1 - \frac{1}{\alpha} \right)_{+}$$

for any choice of  $\rho$ , M and  $\Sigma^{\otimes}$ .

#### GAUSSIAN UNIVERSALITY AT ZERO REGULARIZATION



Training loss as a function of n/p at  $\lambda = 10^{-15}$ . The black solid line represents the outcome of the theoretical prediction for  $\Sigma$  equal to the identity matrix I. Colored dots refer to numerical simulations on MNIST pre-processed with Gaussian random features and error function non-linearity (blue dots), fashion-MNIST pre-processed with wavelet scattering transform (red dots), grayscale CIFAR10 pre-processed with Gaussian random features and relu non-linearity (green dots) and a mixture of two Gaussians with  $\mu_{1/2} = (\pm 1, 0, ... 0)$ ,  $\Sigma_{1/2} = I$  and  $\rho_{1,2} = 1/2$  (orange dots).

#### GAUSSIAN UNIVERSALITY AT FINITE REGULARIZATION



Training loss as a function of n/p at finite  $\lambda$ . The colored dots refer to numerical simulations on the same datasets of the previous plot. The black solid lines correspond to the theoretical predictions of the Gaussian Covariate model with  $\Sigma$  being the covariance matrix of the corresponding dataset.

#### HOMOGENITY ASSUMPTION



Input covariance matrices of grayscale CIFAR10 pre-processed with wavelet scattering transform. The covariances are conditioned on the true labels, e.g. airplane (rightmost), automobile (middle) and truck (rights most). Lighter colors refer to stronger correlations.