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Phase diagram of SGD in high-dimensional
two-layer neural networks
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Setting

Teacher function:
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Learned by a student two-layer neural network with weights W € R®x»
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through Stochastic Gradient Descent (SGD):
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SGD aims to directly minimize the population risk R
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Local fields and overlaps

Everything in f and f happens through the local fields
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If x ~ N(0,1) everything is characterized through the order parameters
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Update equations for the overlaps
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collected into the overlap matrix
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The updates for the overlap matrix read
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learning

where e = v/p and )
£ =y’ ~ fla’, W)

Learning term <= Gradient flow approximation

Scaling of . <= Relative weight of learning and variance terms

Theorem: Rigorous ODE approximation

Define ,
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and let ¢ : RPHRxp+E) _ RHR)IX(HF) he the expectation of the RHS of (1):
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Then € converges to the solution € of
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Extension of Saad & Solla for p > 1 with nonasymptotic bound
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Phase transitions in ¢

Yot << 1, perfect learning:
Y(Q) = Par(2) +o(1)

Equivalent to gradient flow approximations

 variance dominates:
¢<Q) — wvar(ﬂ) - 0(1)

No learning terms: M"Y =~ M,

Yeoff X 1: Saad & Solla line
Y(Q) = Yar(2) + Y (£2)

Some learning, then a plateau with asymptotic risk oc vA
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Figure 1. lllustration of the different regimes of ODEs

Interplay between v and p

Phase transitions happen in term of ve¢ = ~v/p, SO we can make a two-dimensional phase

diagram
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Figure 2. Phase diagram with v ~ d=°, p ~ d*
Overparametrization <= Tuning the learning rate
Sample complexity
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Figure 3. Effect of v on convergence times

Tradeoff between achived minima and sample complexity




